Aplikasi Hukum Termodinamika Dalam Kehidupan Sehari- hari (MPG CAPS)

0 komentar


 Di zaman modern ini, kebutuhan semakin meningkat dan harga semakin melunjak tinggi. Terutama BBM (Bahan Bakar Minyak) yang sekarang ini akan mengalami kenaikan. Hal ini di sebabkan karena harga minyak dunia naik oleh karena itu berdampak pada kenaikan BBM terutama di Indonesia. Salah satu dampak dari kenaikan BBM ini adalah semakin sakitnya hidup rakyat kecil atau rakyat miskin. Menurut saya, adapun tindakan yang dapat kita lakukan dalam mengurangi penggunaan energi di tengah mahalnya harga BBM salah satunya dengan menggunakan produk full additive yaitu MPG Caps yang merupakan produk untuk menghemat pengeluaran para pengguna kendaraan bermotor.
     MPG Caps (Mileages Per Gallon Capsule) adalah produk yang berbentuk kapsul di gunakan untuk merawat mesin yang di produksi oleh Fuel Freedom Internasional di Amerika Serikat yang 100% terbuat dari bahan organik aktif yang tidak mengandung filter. MPG Caps dapat digunakan untuk semua jenis bahan bakar seperti bensin, solar dan biodiesel. MPG Caps berfungsi untuk meningkatkan mileage per gallon kendaraan, meningkatkan umur klep mesin dan busi mesin, mencegah pembentukan limbah sisa-sisa pembakaran yang tidak diinginkan dalam mesin, mengurangi peningkatan karbondioksida setelah mesin bekerja.
     Hubungan antara termodinamika dengan suatu mesin adalah relasi termodinamik yang menunjukkan bahwa efisiensi termal dalam suatu sistem mesin motor adalah presentasi perbandingan kuantitas tenaga mekanik keluaran dan kuantitas tenaga panas masukan yang bila di jabarkan secara matematika fisika berdasarkan hukum termodinamika adalah :
Di mana :
Q1 : kuantitas tenaga panas masukan
Q2 : kuantitas tenaga panas keluaran
W : energi mekanik keluaran / tenaga mesin
 n  : efisiensi termal
     Kuantitas BBM pada kendaraan bermotor yang berhasil di ubah mesin menjadi gerakan mesin sekitar 70%. Berdasarkan pada rumus di atas efisiensi dapat di perbesar dengan dua cara yaitu :
1. memperkecil kuantitas input pada kuantitas output efektif tetap atau sebaliknya.
2. memperbesar kuantitas output efektif pada kuantitas output efektif pada kuantitas input tetap.
Adapun cara untuk meningkatkan efisiensi termal mesin antara lain adalah sebagai berikut :
• Meningkatkan rasio kompersi mesin menjadi lebih besar daripada 9.
• Meningkatkan suhu penyalaan dan pembakaran via peningkatan tegang elektroda busi, dengan mengganti koil penyalaan atau menambahkan SPB antara koil dan busi dan mengganti busi dengan yang lebih tahan panas.
• Meniadakan endapan kerak arang dalam ruang silinder mesin dengan cara meningkatkan pembakaran BBM.
      MPG Caps bekerja sebagai suatu katalis yang mempercepat mesin dalam melakukan pembakaran sehingga meningkatkan efisiensi mesin. Di dalam bahan bakar terdapat cairan yang dapat membawa dan menghantarkan kapsul ke ruang pembakaran mesin. Hal ini mengakibatkan mempercepat dan menyempurnakan reaksi pembakaran BBM. Bahan bakar akan semakin efisien sehingga mesin lebih irit. Penggunaan MPG Caps ini dapat mengirit penggunaan bahan bakar sekitar 12%. Manfaat lainnya adalah dapat mengurangi emisi gas rumah kaca, yang mengurangi efek global warning. Jadi, pada saat keadaan Indonesia mengalami kenaikan BBM ini, MPG Caps sangat membantu dalam proses pengiritan BBM hingga 12%.


SOURCE : http://murninana.blogspot.com/2013/05/aplikasi-termodinamika-dalam-kehidupan.html

Theory of heat capacity




Factors that affect specific heat capacity

For any given substance, the heat capacity of a body is directly proportional to the amount of substance it contains (measured in terms of mass or moles or volume). Doubling the amount of substance in a body doubles its heat capacity, etc.
However, when this effect has been corrected for, by dividing the heat capacity by the quantity of substance in a body, the resulting specific heat capacity is a function of the structure of the substance itself. In particular, it depends on the number of degrees of freedom that are available to the particles in the substance, each of which type of freedom allows substance particles to store energy. The translational kinetic energy of substance particles is only one of the many possible degrees of freedom which manifests as temperature change, and thus the larger the number of degrees of freedom available to the particles of a substance other than translational kinetic energy, the larger will be the specific heat capacity for the substance. For example, rotational kinetic energy of gas molecules stores heat energy in a way that increases heat capacity, since this energy does not contribute to temperature.
In addition, quantum effects require that whenever energy be stored in any mechanism associated with a bound system which confers a degree of freedom, it must be stored in certain minimal-sized deposits (quanta) of energy, or else not stored at all. Such effects limit the full ability of some degrees of freedom to store energy when their lowest energy storage quantum amount is not easily supplied at the average energy of particles at a given temperature. In general, for this reason, specific heat capacities tend to fall at lower temperatures where the average thermal energy available to each particle degree of freedom is smaller, and thermal energy storage begins to be limited by these quantum effects. Due to this process, as temperature falls toward absolute zero, so also does heat capacity


Degrees of freedom

Molecules are quite different from the monatomic gases like helium and argon. With monatomic gases, thermal energy comprises only translational motions. Translational motions are ordinary, whole-body movements in 3D space whereby particles move about and exchange energy in collisions—like rubber balls in a vigorously shaken container (see animation here [16]). These simple movements in the three dimensions of space mean individual atoms have three translational degrees of freedom. A degree of freedom is any form of energy in which heat transferred into an object can be stored. This can be in translational kinetic energy, rotational kinetic energy, or other forms such as potential energy in vibrational modes. Only three translational degrees of freedom (corresponding to the three independent directions in space) are available for any individual atom, whether it is free, as a monatomic molecule, or bound into a polyatomic molecule.
As to rotation about an atom's axis (again, whether the atom is bound or free), its energy of rotation is proportional to the moment of inertia for the atom, which is extremely small compared to moments of inertia of collections of atoms. This is because almost all of the mass of a single atom is concentrated in its nucleus, which has a radius too small to give a significant moment of inertia. In contrast, the spacing of quantum energy levels for a rotating object is inversely proportional to its moment of inertia, and so this spacing becomes very large for objects with very small moments of inertia. For these reasons, the contribution from rotation of atoms on their axes is essentially zero in monatomic gases, because the energy spacing of the associated quantum levels is too large for significant thermal energy to be stored in rotation of systems with such small moments of inertia. For similar reasons, axial rotation around bonds joining atoms in diatomic gases (or along the linear axis in a linear molecule of any length) can also be neglected as a possible "degree of freedom" as well, since such rotation is similar to rotation of monatomic atoms, and so occurs about an axis with a moment of inertia too small to be able to store significant heat energy.
In polyatomic molecules, other rotational modes may become active, due to the much higher moments of inertia about certain axes which do not coincide with the linear axis of a linear molecule. These modes take the place of some translational degrees of freedom for individual atoms, since the atoms are moving in 3-D space, as the molecule rotates. The narrowing of quantum mechanically determined energy spacing between rotational states results from situations where atoms are rotating around an axis that does not connect them, and thus form an assembly that has a large moment of inertia. This small difference between energy states allows the kinetic energy of this type of rotational motion to store heat energy at ambient temperatures. Furthermore internal vibrational degrees of freedom also may become active (these are also a type of translation, as seen from the view of each atom). In summary, molecules are complex objects with a population of atoms that may move about within the molecule in a number of different ways (see animation at right), and each of these ways of moving is capable of storing energy if the temperature is sufficient.
The heat capacity of molecular substances (on a "per-atom" or atom-molar, basis) does not exceed the heat capacity of monatomic gases, unless vibrational modes are brought into play. The reason for this is that vibrational modes allow energy to be stored as potential energy in intra-atomic bonds in a molecule, which are not available to atoms in monatomic gases. Up to about twice as much energy (on a per-atom basis) per unit of temperature increase can be stored in a solid as in a monatomic gas, by this mechanism of storing energy in the potentials of interatomic bonds. This gives many solids about twice the atom-molar heat capacity at room temperature of monatomic gases.
However, quantum effects heavily affect the actual ratio at lower temperatures (i.e., much lower than the melting temperature of the solid), especially in solids with light and tightly bound atoms (e.g., beryllium metal or diamond). Polyatomic gases store intermediate amounts of energy, giving them a "per-atom" heat capacity that is between that of monatomic gases (32 R per mole of atoms, where R is the ideal gas constant), and the maximum of fully excited warmer solids (3 R per mole of atoms). For gases, heat capacity never falls below the minimum of 32 R per mole (of molecules), since the kinetic energy of gas molecules is always available to store at least this much thermal energy. However, at cryogenic temperatures in solids, heat capacity falls toward zero, as temperature approaches absolute zero.



Table of specific heat capacities

 
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong-Petit limit of 25 J·mol−1·K−1 = 3 R per mole of atoms (see the last column of this table). Paraffin, for example, has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).
In the last column, major departures of solids at standard temperatures from the Dulong-Petit law value of 3 R, are usually due to low atomic weight plus high bond strength (as in diamond) causing some vibration modes to have too much energy to be available to store thermal energy at the measured temperature. For gases, departure from 3 R per mole of atoms in this table is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to other atoms, as happens in many solids


Notable minima and maxima are shown in maroon
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted.[citation needed]
Substance
Isobaric
mass
heat capacity
cP
J·g−1·K−1
Isobaric
molar
heat capacity
CP,m
J·mol−1·K−1
Isochore
molar
heat capacity
CV,m
J·mol−1·K−1
Isobaric
volumetric
heat capacity

CP,v
J·cm−3·K−1
Isochore
atom-molar
heat capacity
in units of R
CV,am
atom-mol−1
Air (Sea level, dry,
0 °C (273.15 K))
gas
1.0035
29.07
20.7643
0.001297
~ 1.25 R
Air (typical
room conditionsA)
gas
1.012
29.19
20.85
0.00121
~ 1.25 R
solid
0.897
24.2

2.422
2.91 R
liquid
4.700
80.08

3.263
3.21 R
mixed
3.5


3.7*

solid
0.207
25.2

1.386
3.03 R
gas
0.5203
20.7862
12.4717

1.50 R
solid
0.328
24.6

1.878
2.96 R
solid
1.82
16.4

3.367
1.97 R
solid
0.123
25.7

1.20
3.09 R
solid
0.231
26.02


3.13 R
gas
0.839*
36.94
28.46

1.14 R
solid
0.449
23.35


2.81 R
solid
0.385
24.47

3.45
2.94 R
solid
0.5091
6.115

1.782
0.74 R
liquid
2.44
112

1.925
1.50 R
Gasoline (octane)
liquid
2.22
228

1.64
1.05 R
solid
0.84




solid
0.129
25.42

2.492
3.05 R
solid
0.790


2.17

solid
0.710
8.53

1.534
1.03 R
gas
5.1932
20.7862
12.4717

1.50 R
gas
14.30
28.82


1.23 R
gas
1.015*
34.60


1.05 R
solid
0.450
25.09[29]

3.537
3.02 R
solid
0.129
26.4

1.44
3.18 R
solid
3.58
24.8

1.912
2.98 R
Lithium at 181 °C[30]
liquid
4.379
30.33

2.242
3.65 R
solid
1.02
24.9

1.773
2.99 R
liquid
0.1395
27.98

1.888
3.36 R
Methane at 2 °C
gas
2.191
35.69


0.66 R? 4.23R
liquid
2.14
68.62


1.38 R
Molten salt (142-540 °C)[32]
liquid
1.56


2.62

gas
1.040
29.12
20.8

1.25 R
gas
1.0301
20.7862
12.4717

1.50 R
gas
0.918
29.38
21.0

1.26 R
Paraffin wax
C25H52
solid
2.5 (ave)
900

2.325
1.41 R
Polyethylene
(rotomolding grade)[33][34]
solid
2.3027




Silica (fused)
solid
0.703
42.2

1.547
1.69 R
solid
0.233
24.9

2.44
2.99 R
solid
1.230
28.23


3.39 R
solid
0.466




solid
0.227
27.112


3.26 R
solid
0.523
26.060


3.13 R
solid
0.134
24.8

2.58
2.98 R
solid
0.116
27.7

2.216
3.33 R
Water at 100 °C (steam)
gas
2.080
37.47
28.03

1.12 R
Water at 25 °C
liquid
4.1813
75.327
74.53
4.1796
3.02 R
Water at 100 °C
liquid
4.1813
75.327
74.53
4.2160
3.02 R
Water at −10 °C (ice)[28]
solid
2.11
38.09

1.938
1.53 R
solid
0.387
25.2

2.76
3.03 R
Substance
Isobaric
mass
heat capacity
cP
J·g−1·K−1
Isobaric
molar
heat capacity
CP,m
J·mol−1·K−1
Isochore
molar
heat capacity
CV,m
J·mol−1·K−1
Isobaric
volumetric
heat capacity

CP,v
J·cm−3·K−1
Isochore
atom-molar
heat capacity
in units of R
CV,am
atom-mol−1
 
 
source :


http://en.wikipedia.org/wiki/Heat_capacity

Info Termo: Tenaga surya dan angin global di beberapa negara

0 komentar


Progres pembangunan energi terbarukan di negara maju terus bertambah. Salah satunya Tiongkok yang terus mengenjot pembangunan turbin pembangkit listrik, dibelakangnya adalah Jerman lebih banyak mengunakan solar cell. Seberapa besar hasil power dari pembangunan energi terbaharukan.

Untuk pembangkit listrik dengan turbin angin mencapai 318 GW untuk tahun lalu saja. Tiongkok di urutan pertama yang menambah kapasitas turbin angin sebesar 90GW dan baru menambah kapasitas 16.1GW pembangkit listrik dari turbin angin, disusul Amerika, Jerman dan Spanyol



Pembangkit dari sinar matahari  Tiongkok masih kalah dalam menghasilkan listrik dari pembangkit solar, tapi tahun lalu meningkat 11,8GB. Jepang dan Amerika juga menambah kapasitas solar untuk listrik dari 6,9 dan 4,8GW. Negara Jerman tetap teratas walau hanya menambah kapasitas 3,3GW pada tahun 2013. Listrik yang dihasilkan dari pembangkit solar cell secara global menghasilkan 138GW.
Data pembangkit diatas dihasilkan dari lembar panel surya, tidak termasuk sistem pembangkit dari panas cahaya matahari.


Untuk pembangkit energi terbarukan melibatkan teknologi bioenergi, geothermal, hydropower, solar dan angin. Sekitar 6,5 juta orang pekerja terlibat dibidang ini saja. Itupun diluar dari pekerja bendungan skala raksasa,


bila dimasukan maka angka pekerja yang terlibat akan lebih besar
 
source : http://obengplus.com/articles/4483/1/Tenaga-surya-dan-angin-global-di-beberapa-negara.html#.VQswGo4qTIU